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Missing motor of on-off intermittency
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We illustrate the failure of standard algorithms to predict correctly the dimension of some composite maps
that produce on-off intermittency. Examination of the phase portraits of some examples suggests that the
culprit is a nearly singular density of points close to the origin and we describe ways to refine the algorithms
S0 as to obtain correct resulf§1063-651X96)03212-9

PACS numbd(ps): 05.45+b

I. INTRODUCTION parameter is a function of a variable generated by a chaotic
or a stochastic system, we may encounter rich and intermit-
Given an irregular looking time series, it is now standardtent oscillations. o _
procedure to construct from it a phase portrait by the method To be more specific, suppose .that the original oscillator
of delay coordinate$1]. It is then possible to make this OPerates in a phase spasewith dimensionDy when the
picture more quantitative by measuring some statistical propcOntrol parametey. is constant in time. We assume that
erties of the trajectory such as the correlation dimensioff'N€n# is below a certain critical valug,, the oscillator is
[1,2]. This may be done using the Grassberger-Procacci uiescent and the system is dominated by an atfractor of low
(GP) algorithm[3], in which one determines the slope of a imension, say a fixed point. FQr> ug, the oscillator be-

logarithmic plot of the correlation integral vs the separationc®Mes time dependent. Now lgt be time dependent and
for increasing values of the dimensidd, of the recon- suppose that its time dependence is determined by a second

. . system, the driver, which, when operating autonomously, oc-
structed phase space. If, for increasing valueDegf the y b 9 Y

| fin | h his i ol cupies a phase spagewith dimensionDy . The total system
slopes converge to a finite valu@,, then this is a useful ;" sop has a phase space dimensDp=Dy+ Dy and it

approximation to the desired dimension. _may be dominated by an attractor with correlation dimension
This procedure is normally quite successful when applied, "I the cases of interest here, we observe only the dynam-
to laboratory experiments, though there may be problemgs of the forced oscillator, but wish to know something
when there are not sufficiently abundant dp4d On the  apout the combined system, suchix, and/orD,.
other hand, even for large and adequate data sets, situationsQur earlier studies of systems of this kind have suggested
do arise in which standard procedures do not give correghat the conventional dimension-finding algorithms give the
dimensional estimateb—7]. What is disturbing is that in  same results, independently of the dimension of the driver.
some of these cases the procedures themselves give no indihis outcome occasioned surprise on the part of those who
cation that all is not well, even when the so-called scalingquoted a theorem of Takep$6,17], suggesting that the stan-
curves look quite healthy. In such cases, more subtle apdard procedures should give the dimension of the combined
proaches are needed and we discuss here an instance of thjstem correctly. However, in the fine print of this theorem
problem. there is the assumption that the coordinate that is measured is
Our example is a form of intermittency that was first stud-generic. When only one coordinate &is measured, this
ied in fluid turbulence. The term intermittency was intro- @sumption may not apply. On the other hand, there were
duced to describe signals that alternated between flat pok0se, especially Grassberderivate communicatioh who
tions and bursting ones, interpreted as the passage of lamin@fimitted the breakdown of the standard method, but felt that,

and turbulent states of the fluid passing by a pr@ein I principle, it should be possible to tell something about the

chaos theory, the term has been generally used to refer to afigturé and dimension of the driver from a time series of the
ordinate of the oscillator. The aim of this paper is to report

kind of alternation of behavior. Hence is has been useful ton our efforts to learn the answer to the implied question by
|nt.ro'duce the' retronyrmn—qff mterml'ttency[g] When the evising a sufficiently discriminating method to do the job.
original technical sense is intended, in which there is abrup uch a method could also be useful in other kinds of problem

switching from periods of stasis to bursts of large variation, it seems worthwhile to describe the results of the search
and back again. Many simple models of this kind of behavior it

have been proposed and studied in the past fifteen yeays

[10-15). Il. DETECTING THE DIMENSION
Most of the models of on-off intermittency have in com- OF ON-OFF INTERMITTENCY

mon a single mechanism in which a nonlinear oscillator has

a time-dependent control “parametefi(t) that determines

its stability. The wealth of this time dependence determines To illustrate the issue we are discussing we use the map

the complexity of the consequent behavior. When the controX: [0,1]—[0,1] (described if9]):

A. Models
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] . To give an early indication of the problem of interest we

: show in Fig. 2 the time series,, obtained with two different
values ofa, for both the doubling mafDM) and white noise
(WN) as drivers. What we find striking is that the low-
dimensional doubling map and the noise give very similar
looking results, which leads us to ask the question consid-
ered here: Can we from the time seriés distinguish be-
tween the results produced by the two drivers without any
further information about the system or the bare control
parametern? It has already been observed that this would be
a formidable task as the systexnis by its nature an ampli-
fier of error and effectively masks the input frovh In the
rest of this section we describe how the standard procedure
for determining the dimension of the system fails.
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B. Correlation integrals

FIG. 1. Bifurcation plot of the magpl). The two versions oK@ Y evidently have completely dif-
ferent dimensions, so we naturally want to learn whether we
could detect this by computing dimensions from a time series

1) of the drive_n systen)(n_. For example, we hth_a computed_

Lu(l-X,) if 1<X,<1. the correlation dimension of our data series using the famil-

iar GP algorithn{3]. This we did in the usual manner by the

time-delay procedure [16], constructing a set of

D.-dimensional vectors

Xn+1=

This map always has the fixed poi¥t=0, which is stable
for <1 and unstable fop>1. Whenu>1 there is a sec-
ond fixed pointX;= wu/(u+ 3), which is stable fop<3 and Xn=1{Xn Xns1s - - Xnap -1} 3
unstable otherwise. In Fig. 1, we show a bifurcation diagram ©
for this system.

We are interested in seeing what happens wheis al-  Where D, is the embedding dimension introduced earlier.
lowed to depend on time; that is, we replace it(l) by  Then we computed the correlation integral
un - We could, of course, begin with a simple time depen-
dence foru, and such matters have been widely studied else- 2 N
where. Here we want to concentrate on the situation where CN=—-—--=> > oO(r—|X,—Xi|), (4)
u,, is determined by a second dynamical syst¢ne drive) N(N-w)i=1 5w L

n
Y: [0,1]—[0,1], which will produce an irregular sequence

of values either chaotically or stochastically. Specifically, we,n - o ; ;
i . ere® is the Heaviside step function ahdis the length of
shall work with the two drivers:Y,,;=2Y,modl and P g

L ) . . . X our data series. The parameterwas introduced by Theiler
Yn+1, which is V\.’h'te hoise “”'fom."y distributed in th_e '€ [18] to make a distinction among close-lying vectors to sepa-
gion [O.'][' The f|r_st_ map is sometimes called t_tieubllng rate those that are simply near each other because they are
map with Dy=1; itis related to the so-called shift map. The ¢jnse in time from those that arise from close returns in the
hoise algorlthr_n hagin effect DY:OO'_ L embedding space. We have variedo see whether there is

We determineu, from the mapsy in this simple way: 5y significant change in going through the values one, ten,
and a thousand and found none. This is to be expected for a

Mn=2aYy, (2 map; Theiler's parameter has more of a role for flows. For all
the results reported here, we use the value10.
wherea is a constant to be specifiétypically between 0 and Asr tends to zero, we expe€i(r) to vanish also and we
4). look for a scaling likeC(r)«r” in the limit of smallr.

In the present work we do not |&t experience any influ- Grassberger and Procaccia suggested usittgestimate the
ence fromX. This type of coupling gives the combined sys- correlation dimensio,, an approximation that works well
tem that is called akew product structure€This permits us within the range where scaling holds. Within that region, we
to find interesting parameter regimes more readily than withexpect» to increase to a maximum value close By as
feedback. We are interested in particular in parameteD, increases througb ;.
choices for which the output of shows an alternation be- What we are calling white noise in this discussion is re-
tween quiescent and bursting behavior. Generally, we choosaly a signal from an algorithm that represents a system of
to fix the systen¥ and change in order to obtain behavior very large dimension, too large to be of direct interest.
for the signal X} ranging from no intermittent bursts at all Hence, for white noisey should not saturate a3, is in-
(X,=0 always, whena is below a critical valuea,<2.7, up  creased, whereas for a determinigticat is, low ordey sys-
to very dense bursts whenapproaches the limiting value 4. tem, the driver is of low dimension and can be expected to
(Fora>4, X develops a repeller and we shall not investigatesaturate at a limiting valuB, as whenD, increases.
that behavior hereg. In practice, these determinations are carried out by plot-
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FIG. 2. Data series(a) white-noise forcing witha=2.88, (b) doubling-map forcing witha=2.88, (c) white-noise forcing with
a=3.54, and(d) doubling-map forcing witte=3.54.

ting log; oC(r) vs log o and determining the slopeof this  failure of the standard procedure is not alleviated even when
plot. In principle, we would determine this slope in the limit We use longer data series, as we have confirmed with a series
r—0, but, in fact, there is a lowest scale below which theOf 10° points. ] ] )
scaling is not good and we must select some rangeaver In making comparisons l_:)etween runs using the determin-
which to look at the fractality. When we proceed in this istic and the stochastic driving we shall refer to the values of
standard way, we encounter the problem that motivates thi'® coupling pafamemfo/&?h‘? Wh'tf noise a?f a(;‘d ;Qr t?e
present workw saturates to a finite value ftwoththe deter- et?rmmllslnc ﬁase a8y ‘nd iming a tsoTve ?han arrn 1za I?rn’
ministic and the stochastic drivers. This is illustrated in Fig.We ypically choos&, andag so as 10 give the same corre-

3, which shows the correlation integrals for the four timelatlon dimension estimate in the naive application of the GP

series shown in Fig. 2, where the maximum embedding dilelgonthm to the data series. From the plot in Fig. 4 we see

o . that such a pair of values & =2.88 anday=3.54.
mension 'SD_e_ 12. Flgure_4 shows the va!ue of the correla- In summary, we find that the standard approach cannot be
tion dimension as a function of the coupling strengiffor  gjieq on to give the correct dimension in the case of on-off
both the DM and the WN forcing. The dimensions have beefnermittency. It does not even give an indication that there is

computed as an average over ten realizations of the procesgsmething amiss. We have also investigated whether other
error bars are & deviations. techniques, such as calculating power spectra and autocorre-

We observe thaD, is always very smallD,<1.5) and |ations, may help in this respect. While these showed inter-
that for both kinds of forcings there are some ranges thfat  esting features in themselves, they did not prove helpful in
give the same correlation dimension. This means that givethis problem. Likewise, we tried the procedure of phase ran-
only the two signals, without any other information, one maydomization[6,7]. For both the deterministic and the stochas-
not be able to distinguish the two cases and could, in anyic drivers, the dimension of the phase-randomized signal
event, erroneously conclude that the signal forced by whitgrows without bound, giving the false impression of a deter-
noise comes from a total system of finite dimension. Thisministic nature of both time series.
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FIG. 3. Plots of logyC vs loggr for the various cases with the sequence of Fig. 2. Each curve refers to a different embedding dimension

D¢; he

08

06

0.4

0.2

0

re I=D.,<12 andw=10.

Average Correlation Dimension vs. a V?,m : 1
i H -
0
{HH{{ s ﬁﬁp%ﬁ%ﬂﬂh#
éuﬂn{ﬂﬂﬁﬁhﬂ i
2.8 3 3.2 34 3.6 3.8 4

a

Ill. MODIFIED APPROACHES
A. Phase portraits

In seeking a clue about how to proceed to discover the
dimension of the system, we naturally examine the plots of
Xn+1 VS X,,. As we see from such plots in Figs(a and
5(b), the output that results when we use the doubling map as
the driver has dense veils of points that do not appear when
we drive with white noise. This distinction between the out-
puts produced when using the two drivers is even more strik-
ing on the plots ofX,,, vs X,, in Figs. 5c) and 8d). The
output using the doubling map has very distinct structures
that do not appear when we drive with white noise.

We naturally surmise that the appearance of distinct struc-
tures in the case of the doubling map is the signature of
low-dimensional behavior and we want to take advantage of
the differences in Fig. 5 to fashion a scheme of dimension
detection. On the other hand, we are somewhat surprised that
despite the absence of structures in the white-noise case, the
GP algorithm produces low dimensions. A clue to the com-
monality of low-dimensional results in the two cases, which

FIG. 4. D, vs a from the GP algorithm averaged over ten real- We see in looking at the plots, is the high density of points
izations for forcing by both noise and doubling map. Error bars argiear the origin in both cases. These occur because of the

1o devi

ations.

“off” cycles in the data series, during whiclX,, remains
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FIG. 5. Phase portrait(,,,; vs X, for (a) white noise andb) doubling map an,,,, vs X, for (c) WN and(d) DM.

very close to zero for noticeable stretches of time. Theseimensions. The techniques we suggest next were devised
weigh heavily in the dimension determinations. Such strucwith these features of the results in mind.
tures are reminiscent of self-similar excursions from the qui-
escent phase seen by Brooke and Md$3 in a model of the B. Approaches
solar dynamo and underlie the scaling analysis of Heagy,
Platt, and HammgJ20] at the transition to on-off behavior.
The significance of all this is clearer when we recall that The statistical properties of the phase portrait of our sys-
the plots in Fig. 5 may be thought of as delay reconstructiongem are not changed by a smooth transformation of the co-
in two-dimensional embedding spaces with delays correordinate X as the analyses of Takeri$6] and of Sauer,
sponding toAn=1 or 2. Since the GP algorithm works by Yorke, and Casdag[i17] show. Hence we choose to remap
averaging on all the vector pairs in the embedding space, iour data so as to bring out better the behavior near the origin.
may give misleading results when the scaling properties ofVe introduce a functiorM(X) designed to diminish the
the structures are as inhomogeneous as they appear in Fig.range of scales in the data. Two simple examples that work
In particular, we see in Fig. 5 that the typical scale of thewell are M (X,,) =l0g;o(X,) and M (X,)=XP, the latter be-
structures produced by forcing with the doubling map be-ing useful for 0<p<1. The interest of using logarithmic
comes smaller as we approach the origin in the appropriateariables for on-off intermittency has already been noted
figure. This is a result of the alternations between bursting20,21] and the case op going to zero is related to that
and quiescent periods. mapping. For the present purpose, it must be noted that these
The vectors are nonuniformly distributed over a range inmaps are not smooth at the origin, so we cannot cite the
lengths from about 10°° up to 1. The underlying structure Takens theoremil6] to justify their use. Nevertheless, they
whose correlations might be important for the actual dimendo work quite well in practice as the singularity right at the
sion determination is blurred because the lengths of the resrigin does not seem to play any role.
constructed vectors are not adequately resolved. A similar The estimated correlation dimensionss D, for the two
phenomenon may be expected to occur in higher embeddirkjnds of forcing and for the two scaling functions are shown

1. Rescaling the data
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FIG. 6. v vs D, for the various cases with the sequence of Fig. 2. The different symbols refer to the various methods employed to
calculate the correlation dimension. Open diamonds refer to the original results obtained when using the absolute distance. Open triangles
and crosses refer to rescaling the data by, respectively, a logarithm and a power lg#\W0ii; pluses and open squares refer to using the
distances indicated, respectively, by E@.and (7); stars refer to filtering the data by meth@o.

in Fig. 6. We can see how, using the small vafe0.01 or De | XD =y
using the InX,)), we may readily distinguish the two kinds of dB(X,Y)EE — TV
forcing. We now get a convergence ofto D,=2.0 for the =1 max( X[, [Y])
doubling map and no convergence at all for the white noise.

Y

With these two distances we obtained the results shown in

Fig. 6. For the case forced with the doubling map, the cor-
An approach that is related to that of rescaling the data igelation dimension converge #,=2.0, while for forcing

that of changing the distance used in the embedding spacwith white noise, convergence does not occur. This method

2. Modifying the distance in the embedding space

Heretofore, we have used tlabsolute distance works well, unless one wants to calculdg.
De 3 Filtering the data
d(X,Y)=2, [XW—yW| 5
( ) .21 | | © As we have seen for th¢, vs X, (k=1, 2, ...)plots,

the failure to resolve the structures near the origin results in

wherex® is theith component of a vectoX in the embed- the inability of some algorithms to discriminate among the
ding spacdsee definition(3)]. To bring out the structures Various true dimensions in the system producing the signal.

near the origin we have used several distances, including ©One way to remove this difficulty might be simply to filter
out the points near the origin. We have tried various schemes

i) of this kind and mention two here.
X -y (6) (i) Eliminate all thedata points X<C from our data
[XO]+ Y] series, which leaves out all the “off” segments.

22
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(i) Exclude all the reconstructed vectotshavingat least  definitions of distance in the dimension algorithms should
one componenk<C. routinely be introduced as a safeguard against false results. A
The first of these methods introduces some glitches wher#ypical sign of possible trouble is the hovering of the signal
some welding of data segments is needed, but these do n@gar a constant value. A slow drift through such a value, as
seem to be very significant. This feature does not appear ift the Pomeau-Manneville intermittency, does not generally
the second method. Figure 6 shows the correlation dimensigfidicate trouble, as the drift is enough to lift the degeneracy.
obtained for the second method using a cutoff valugt has been suggested that a histogram of the data would
C=5% of the average signal amplitude. reveal the singularity and that this should be adequate warn-

It is interesting that there are forms of filtering that let using that dimension estimate might be problematic. _
get at the dimensions although they force us to give up data. W€ see from the filtering example that the dimensions
This is not a serious deficiency except in systems with verfnemselves do not tell as much of the story as one would like
long off periods, in which case it would take prohibitively t0 know and other forms of information are needed. In tur-
long to acquire enough data to make accurate dimension d@ulence theory, one uses a parameter called the intermittency
terminations. factor measuring the fraction of time the system is bursting.
We have found that this is not a reliable indicator of the
nature of the data as its value is sensitive to the threshold of
bursting that we use.

The case of on-off intermittency has revealed a situation Another quantity that is much used in analyzing chaotic
where the standard algorithm for estimating dimension failssystems is the Lyapunov expon¢®,23. As for the case of
while giving no warning of its failure. Since this form of the dimensions, the distinction between the two kinds of
intermittency is robust and fairly commonplace, we have feltdrivers in on-off intermittency is hard to make with normal
that this issue needs to be addressed. There are alreagyocedures. Signs of any difference between the two cases
known situations where the present considerations may bare not reliably found. However, the introduction of a suit-
helpful as in the case of the cosmic x-ray source known asble distance, as for the case of dimensions, or a suitable
the rapid burster and in certain examples of chemical chaoscaled variable makes the distinction in Lyapounov exponent

More importantly we see that a failure of resolution hasreadily detectable. For the present, it may suffice to conclude
led to the breakdown of the standard procedure. This has toy repeating that in applying standard algorithms for dimen-
do with the assumption that the inn@nd possibly outer sion determination one should check to see whether the re-
scales of the fractal can be safely assigned. We learn frorsults are invariant under coordinate transformation and
this that, when there are doubts of validity, the use of diversehanges of the distance in the reconstructed phase space.

IV. CONCLUSION
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