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Missing motor of on-off intermittency
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We illustrate the failure of standard algorithms to predict correctly the dimension of some composite maps
that produce on-off intermittency. Examination of the phase portraits of some examples suggests that the
culprit is a nearly singular density of points close to the origin and we describe ways to refine the algorithms
so as to obtain correct results.@S1063-651X~96!03212-6#
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I. INTRODUCTION

Given an irregular looking time series, it is now standa
procedure to construct from it a phase portrait by the met
of delay coordinates@1#. It is then possible to make thi
picture more quantitative by measuring some statistical pr
erties of the trajectory such as the correlation dimens
@1,2#. This may be done using the Grassberger-Proca
~GP! algorithm @3#, in which one determines the slope of
logarithmic plot of the correlation integral vs the separat
for increasing values of the dimensionDe of the recon-
structed phase space. If, for increasing values ofDe , the
slopes converge to a finite valueD2, then this is a usefu
approximation to the desired dimension.

This procedure is normally quite successful when app
to laboratory experiments, though there may be proble
when there are not sufficiently abundant data@4#. On the
other hand, even for large and adequate data sets, situa
do arise in which standard procedures do not give cor
dimensional estimates@5–7#. What is disturbing is that in
some of these cases the procedures themselves give no
cation that all is not well, even when the so-called scal
curves look quite healthy. In such cases, more subtle
proaches are needed and we discuss here an instance o
problem.

Our example is a form of intermittency that was first stu
ied in fluid turbulence. The term intermittency was intr
duced to describe signals that alternated between flat
tions and bursting ones, interpreted as the passage of lam
and turbulent states of the fluid passing by a probe@8#. In
chaos theory, the term has been generally used to refer to
kind of alternation of behavior. Hence is has been usefu
introduce the retronymon-off intermittency@9# when the
original technical sense is intended, in which there is abr
switching from periods of stasis to bursts of large variat
and back again. Many simple models of this kind of behav
have been proposed and studied in the past fifteen years~e.g.,
@10–15#!.

Most of the models of on-off intermittency have in com
mon a single mechanism in which a nonlinear oscillator
a time-dependent control ‘‘parameter’’m(t) that determines
its stability. The wealth of this time dependence determi
the complexity of the consequent behavior. When the con
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parameter is a function of a variable generated by a cha
or a stochastic system, we may encounter rich and inter
tent oscillations.

To be more specific, suppose that the original oscilla
operates in a phase spaceS with dimensionDX when the
control parameterm is constant in time. We assume th
whenm is below a certain critical valuem0, the oscillator is
quiescent and the system is dominated by an attractor of
dimension, say a fixed point. Form.m0, the oscillator be-
comes time dependent. Now letm be time dependent an
suppose that its time dependence is determined by a se
system, the driver, which, when operating autonomously,
cupies a phase spaceD with dimensionDY . The total system
in S%D has a phase space dimensionD tot5DX1DY and it
may be dominated by an attractor with correlation dimens
D2. In the cases of interest here, we observe only the dyn
ics of the forced oscillator, but wish to know somethin
about the combined system, such asD tot and/orD2.

Our earlier studies of systems of this kind have sugges
that the conventional dimension-finding algorithms give t
same results, independently of the dimension of the driv
This outcome occasioned surprise on the part of those
quoted a theorem of Takens@16,17#, suggesting that the stan
dard procedures should give the dimension of the combi
system correctly. However, in the fine print of this theore
there is the assumption that the coordinate that is measur
generic. When only one coordinate inS is measured, this
assumption may not apply. On the other hand, there w
those, especially Grassberger@private communication#, who
admitted the breakdown of the standard method, but felt t
in principle, it should be possible to tell something about t
nature and dimension of the driver from a time series of
coordinate of the oscillator. The aim of this paper is to rep
on our efforts to learn the answer to the implied question
devising a sufficiently discriminating method to do the jo
Such a method could also be useful in other kinds of prob
and it seems worthwhile to describe the results of the sea
for it.

II. DETECTING THE DIMENSION
OF ON-OFF INTERMITTENCY

A. Models

To illustrate the issue we are discussing we use the m
X: @0,1#→@0,1# ~described in@9#!:
58 © 1997 The American Physical Society
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55 59MISSING MOTOR OF ON-OFF INTERMITTENCY
Xn115H mXn if 0<Xn<
1
4

1
3 m~12Xn! if 1

4,Xn<1.
~1!

This map always has the fixed pointX050, which is stable
for m,1 and unstable form.1. Whenm.1 there is a sec-
ond fixed pointX15m/(m13), which is stable form<3 and
unstable otherwise. In Fig. 1, we show a bifurcation diagr
for this system.

We are interested in seeing what happens whenm is al-
lowed to depend on time; that is, we replace it in~1! by
mn . We could, of course, begin with a simple time depe
dence form, and such matters have been widely studied e
where. Here we want to concentrate on the situation wh
mn is determined by a second dynamical system~the driver!
Y: @0,1#→@0,1#, which will produce an irregular sequenc
of values either chaotically or stochastically. Specifically,
shall work with the two drivers:Yn1152Ynmod1 and
Yn11, which is white noise uniformly distributed in the re
gion @0,1@. The first map is sometimes called thedoubling
map, with DY51; it is related to the so-called shift map. Th
noise algorithm has~in effect! DY5`.

We determinemn from the mapsY in this simple way:

mn5aYn , ~2!

wherea is a constant to be specified~typically between 0 and
4!.

In the present work we do not letY experience any influ-
ence fromX. This type of coupling gives the combined sy
tem that is called askew product structure. This permits us
to find interesting parameter regimes more readily than w
feedback. We are interested in particular in parame
choices for which the output ofX shows an alternation be
tween quiescent and bursting behavior. Generally, we cho
to fix the systemY and changea in order to obtain behavio
for the signal$Xn% ranging from no intermittent bursts at a
(Xn.0 always!, whena is below a critical valueac,2.7, up
to very dense bursts whena approaches the limiting value 4
~Fora.4,X develops a repeller and we shall not investig
that behavior here.!

FIG. 1. Bifurcation plot of the map~1!.
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To give an early indication of the problem of interest w
show in Fig. 2 the time seriesXn obtained with two different
values ofa, for both the doubling map~DM! and white noise
~WN! as drivers. What we find striking is that the low
dimensional doubling map and the noise give very sim
looking results, which leads us to ask the question con
ered here: Can we from the time seriesXn distinguish be-
tween the results produced by the two drivers without a
further information about the systemY or the bare control
parametera? It has already been observed that this would
a formidable task as the systemX is by its nature an ampli-
fier of error and effectively masks the input fromY. In the
rest of this section we describe how the standard proced
for determining the dimension of the system fails.

B. Correlation integrals

The two versions ofX%Y evidently have completely dif-
ferent dimensions, so we naturally want to learn whether
could detect this by computing dimensions from a time se
of the driven systemXn . For example, we have compute
the correlation dimension of our data series using the fam
iar GP algorithm@3#. This we did in the usual manner by th
time-delay procedure @16#, constructing a set of
De-dimensional vectors

Xn5$Xn ,Xn11 , . . . ,Xn1De21%, ~3!

whereDe is the embedding dimension introduced earli
Then we computed the correlation integral

C~r !5
2

N~N2w!(i51

N

(
j5 i1w

N

Q~r2uX i2Xj u!, ~4!

whereQ is the Heaviside step function andN is the length of
our data series. The parameterw was introduced by Theiler
@18# to make a distinction among close-lying vectors to se
rate those that are simply near each other because the
close in time from those that arise from close returns in
embedding space. We have variedw to see whether there i
any significant change in going through the values one,
and a thousand and found none. This is to be expected f
map; Theiler’s parameter has more of a role for flows. For
the results reported here, we use the valuew510.

As r tends to zero, we expectC(r ) to vanish also and we
look for a scaling likeC(r )}r n in the limit of small r .
Grassberger and Procaccia suggested usingn to estimate the
correlation dimensionD2, an approximation that works wel
within the range where scaling holds. Within that region,
expectn to increase to a maximum value close toD2 as
De increases throughD tot .

What we are calling white noise in this discussion is
ally a signal from an algorithm that represents a system
very large dimension, too large to be of direct intere
Hence, for white noise,n should not saturate asDe is in-
creased, whereas for a deterministic~that is, low order! sys-
tem, the driver is of low dimension and can be expected
saturate at a limiting valueD2 as whenDe increases.

In practice, these determinations are carried out by p
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FIG. 2. Data series:~a! white-noise forcing witha52.88, ~b! doubling-map forcing witha52.88, ~c! white-noise forcing with
a53.54, and~d! doubling-map forcing witha53.54.
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ting log10C(r ) vs log10r and determining the slopen of this
plot. In principle, we would determine this slope in the lim
r→0, but, in fact, there is a lowest scale below which t
scaling is not good and we must select some range ofr over
which to look at the fractality. When we proceed in th
standard way, we encounter the problem that motivates
present work:n saturates to a finite value forboth the deter-
ministic and the stochastic drivers. This is illustrated in F
3, which shows the correlation integrals for the four tim
series shown in Fig. 2, where the maximum embedding
mension isDe512. Figure 4 shows the value of the correl
tion dimension as a function of the coupling strengtha, for
both the DM and the WN forcing. The dimensions have be
computed as an average over ten realizations of the proc
error bars are 1s deviations.

We observe thatD2 is always very small (D2,1.5) and
that for both kinds of forcings there are some ranges ofa that
give the same correlation dimension. This means that gi
only the two signals, without any other information, one m
not be able to distinguish the two cases and could, in
event, erroneously conclude that the signal forced by w
noise comes from a total system of finite dimension. T
he
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failure of the standard procedure is not alleviated even w
we use longer data series, as we have confirmed with a s
of 105 points.

In making comparisons between runs using the determ
istic and the stochastic driving we shall refer to the values
the coupling parametera for the white noise asar and for the
deterministic case asad . Aiming at some standardization
we typically choosear andad so as to give the same corre
lation dimension estimate in the naive application of the
algorithm to the data series. From the plot in Fig. 4 we s
that such a pair of values isar52.88 andad53.54.

In summary, we find that the standard approach canno
relied on to give the correct dimension in the case of on-
intermittency. It does not even give an indication that there
something amiss. We have also investigated whether o
techniques, such as calculating power spectra and autoc
lations, may help in this respect. While these showed in
esting features in themselves, they did not prove helpfu
this problem. Likewise, we tried the procedure of phase r
domization@6,7#. For both the deterministic and the stocha
tic drivers, the dimension of the phase-randomized sig
grows without bound, giving the false impression of a det
ministic nature of both time series.
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FIG. 3. Plots of log10C vs log10r for the various cases with the sequence of Fig. 2. Each curve refers to a different embedding dim
De ; here 1<De<12 andw510.
the
of

as
hen
t-
rik-

res

uc-
of
of

ion
that
, the
m-
ch
ts
the

al-
ar
FIG. 4. D2 vs a from the GP algorithm averaged over ten re
izations for forcing by both noise and doubling map. Error bars
1s deviations.
III. MODIFIED APPROACHES

A. Phase portraits

In seeking a clue about how to proceed to discover
dimension of the system, we naturally examine the plots
Xn11 vs Xn . As we see from such plots in Figs. 5~a! and
5~b!, the output that results when we use the doubling map
the driver has dense veils of points that do not appear w
we drive with white noise. This distinction between the ou
puts produced when using the two drivers is even more st
ing on the plots ofXn12 vs Xn in Figs. 5~c! and 5~d!. The
output using the doubling map has very distinct structu
that do not appear when we drive with white noise.

We naturally surmise that the appearance of distinct str
tures in the case of the doubling map is the signature
low-dimensional behavior and we want to take advantage
the differences in Fig. 5 to fashion a scheme of dimens
detection. On the other hand, we are somewhat surprised
despite the absence of structures in the white-noise case
GP algorithm produces low dimensions. A clue to the co
monality of low-dimensional results in the two cases, whi
we see in looking at the plots, is the high density of poin
near the origin in both cases. These occur because of
‘‘off’’ cycles in the data series, during whichXn remains
e
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FIG. 5. Phase portraits:Xn11 vs Xn for ~a! white noise and~b! doubling map andXn12 vs Xn for ~c! WN and ~d! DM.
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very close to zero for noticeable stretches of time. Th
weigh heavily in the dimension determinations. Such str
tures are reminiscent of self-similar excursions from the q
escent phase seen by Brooke and Moss@19# in a model of the
solar dynamo and underlie the scaling analysis of Hea
Platt, and Hammel@20# at the transition to on-off behavior

The significance of all this is clearer when we recall th
the plots in Fig. 5 may be thought of as delay reconstructi
in two-dimensional embedding spaces with delays co
sponding toDn51 or 2. Since the GP algorithm works b
averaging on all the vector pairs in the embedding spac
may give misleading results when the scaling properties
the structures are as inhomogeneous as they appear in F
In particular, we see in Fig. 5 that the typical scale of t
structures produced by forcing with the doubling map b
comes smaller as we approach the origin in the appropr
figure. This is a result of the alternations between burst
and quiescent periods.

The vectors are nonuniformly distributed over a range
lengths from about 10230 up to 1. The underlying structur
whose correlations might be important for the actual dim
sion determination is blurred because the lengths of the
constructed vectors are not adequately resolved. A sim
phenomenon may be expected to occur in higher embed
e
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dimensions. The techniques we suggest next were dev
with these features of the results in mind.

B. Approaches

1. Rescaling the data

The statistical properties of the phase portrait of our s
tem are not changed by a smooth transformation of the
ordinateX as the analyses of Takens@16# and of Sauer,
Yorke, and Casdagli@17# show. Hence we choose to rema
our data so as to bring out better the behavior near the ori
We introduce a functionM (X) designed to diminish the
range of scales in the data. Two simple examples that w
well areM (Xn)5 log10(Xn) andM (Xn)5Xn

p , the latter be-
ing useful for 0,p!1. The interest of using logarithmic
variables for on-off intermittency has already been no
@20,21# and the case ofp going to zero is related to tha
mapping. For the present purpose, it must be noted that t
maps are not smooth at the origin, so we cannot cite
Takens theorem@16# to justify their use. Nevertheless, the
do work quite well in practice as the singularity right at th
origin does not seem to play any role.

The estimated correlation dimensionsn vsDe for the two
kinds of forcing and for the two scaling functions are show
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FIG. 6. n vs De for the various cases with the sequence of Fig. 2. The different symbols refer to the various methods empl
calculate the correlation dimension. Open diamonds refer to the original results obtained when using the absolute distance. Ope
and crosses refer to rescaling the data by, respectively, a logarithm and a power law withp50.01; pluses and open squares refer to using
distances indicated, respectively, by Eqs.~6! and ~7!; stars refer to filtering the data by method~ii !.
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in Fig. 6. We can see how, using the small valuep50.01 or
using the ln(Xn), we may readily distinguish the two kinds o
forcing. We now get a convergence ofn to D2.2.0 for the
doubling map and no convergence at all for the white no

2. Modifying the distance in the embedding space

An approach that is related to that of rescaling the dat
that of changing the distance used in the embedding sp
Heretofore, we have used theabsolute distance

d~X,Y![(
i51

De

uX~ i !2Y~ i !u, ~5!

whereX( i ) is the i th component of a vectorX in the embed-
ding space@see definition~3!#. To bring out the structures
near the origin we have used several distances, includin

dA~X,Y![(
i51

De

2
uX~ i !2Y~ i !u

uX~ i !u1uY~ i !u
, ~6!
e.

is
ce.

dB~X,Y![(
i51

De uX~ i !2Y~ i !u
max~ uX~ i !u,uY~ i !u!

. ~7!

With these two distances we obtained the results show
Fig. 6. For the case forced with the doubling map, the c
relation dimension converge toD2.2.0, while for forcing
with white noise, convergence does not occur. This met
works well, unless one wants to calculateD0.

3 Filtering the data

As we have seen for theXn vsXn1k (k51, 2, . . . )plots,
the failure to resolve the structures near the origin result
the inability of some algorithms to discriminate among t
various true dimensions in the system producing the sig
One way to remove this difficulty might be simply to filte
out the points near the origin. We have tried various schem
of this kind and mention two here.

~i! Eliminate all thedata points Xn,C from our data
series, which leaves out all the ‘‘off’’ segments.
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~ii ! Exclude all the reconstructed vectorsX havingat least
one componentX( i ),C.

The first of these methods introduces some glitches wh
some welding of data segments is needed, but these do
seem to be very significant. This feature does not appea
the second method. Figure 6 shows the correlation dimen
obtained for the second method using a cutoff va
C55% of the average signal amplitude.

It is interesting that there are forms of filtering that let
get at the dimensions although they force us to give up d
This is not a serious deficiency except in systems with v
long off periods, in which case it would take prohibitive
long to acquire enough data to make accurate dimension
terminations.

IV. CONCLUSION

The case of on-off intermittency has revealed a situat
where the standard algorithm for estimating dimension fa
while giving no warning of its failure. Since this form o
intermittency is robust and fairly commonplace, we have
that this issue needs to be addressed. There are alr
known situations where the present considerations may
helpful as in the case of the cosmic x-ray source known
the rapid burster and in certain examples of chemical ch

More importantly we see that a failure of resolution h
led to the breakdown of the standard procedure. This ha
do with the assumption that the inner~and possibly outer!
scales of the fractal can be safely assigned. We learn f
this that, when there are doubts of validity, the use of dive
e

m-

D

D.
re
not
in
on
e

a.
y

e-

n
,

lt
dy
be
s
s.

to

m
e

definitions of distance in the dimension algorithms sho
routinely be introduced as a safeguard against false resul
typical sign of possible trouble is the hovering of the sign
near a constant value. A slow drift through such a value
in the Pomeau-Manneville intermittency, does not genera
indicate trouble, as the drift is enough to lift the degenera
It has been suggested that a histogram of the data w
reveal the singularity and that this should be adequate w
ing that dimension estimate might be problematic.

We see from the filtering example that the dimensio
themselves do not tell as much of the story as one would
to know and other forms of information are needed. In t
bulence theory, one uses a parameter called the intermitte
factor measuring the fraction of time the system is bursti
We have found that this is not a reliable indicator of t
nature of the data as its value is sensitive to the threshol
bursting that we use.

Another quantity that is much used in analyzing chao
systems is the Lyapunov exponent@22,23#. As for the case of
the dimensions, the distinction between the two kinds
drivers in on-off intermittency is hard to make with norm
procedures. Signs of any difference between the two ca
are not reliably found. However, the introduction of a su
able distance, as for the case of dimensions, or a suit
scaled variable makes the distinction in Lyapounov expon
readily detectable. For the present, it may suffice to concl
by repeating that in applying standard algorithms for dime
sion determination one should check to see whether the
sults are invariant under coordinate transformation a
changes of the distance in the reconstructed phase spac
ys.
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